Greg Lindsay's Blog

August 30, 2016  |  permalink

Known Knowns and Unknown Kano

image

(I’m proud to have joined the United States Military Academy’s Network Science Center at West Point as an associated researcher. In theory, that means working with NSC senior fellow Daniel Evans on refining social network models to analyze highly ambiguous environments and predict where precise interventions will make the biggest difference. In practice, it means working with Evans and his crew at Storm King Analytics to help publicize this work and to look for non-military applications. This post is drawn from SKA’s weekly newsletters; the first installment is further below.)

Our first few newsletters have focused on what the U.S. Army calls Ungoverned Spaces, which despite the name are neither ungoverned nor spaces — they’re dense, tangled networks of state and non-state actors competing for influence in places where formal governance is weak. In our initial installment, we talked about the four factors driving the emergence of such places: urbanization; globalization; wealthy non-state actors, and technology. Last time out, we visited a place embodying all of these trends — Nigeria’s Emirate of Kano, where a power struggle between four clans to place one of the members on the “stool of power” ended with a surprise succession reminiscent of discarded Game of Thrones subplots.

Why this matters: Ungoverned Spaces like Kano, which sits on the edge of the Sahel along the tenth parallel north, represents the global future of both conflict and commerce. The shadow of Boko Haram stalks the emirate while the city of Kano’s three million residents are only just starting to draw the interest of multinational marketers. To succeed in either endeavor, you need to understand where power truly lies. And to that end, as part of our work supporting the Network Science Center at West Point, we wanted to know whether we could analyze and predict which players would succeed in situations like the succession crisis that consumed the emirate in 2014. So, without further ado…

Dramatis Personae:

Emir Ado Bayero, successful clan and religious ruler who reigned for 50 years before dying in 2014.

Rabiu Musa Kwankwaso, governor of the Nigerian state of Kano, who ratifies the selection of the new Emir to square the latter’s status with the state and national power structure. A Muslim, Kwankwaso later ran for president against the Christian incumbent, Goodluck Jonathan, but lost to the eventual winner in his party’s primary.

Sanusi Lamido Sanusi, the Emir’s grand-nephew who was appointed the Governor of the Nigerian Central Bank in 2009. He was forced to resign in 2014 by Jonathan after alleging corruption in the state’s handling of oil revenues.

The Sullubawa, Yolawa, Wudilawa, and Dambazawa clans. Each family has its own mosque, royal titles, and representative Kingmaker who helps to elect the next Emir, who is traditionally, but not always, from the Sullubawa clan. (Emir Ado Bayero fit this pattern.)

The Emir’s relationship with Governor Kwankwaso was known to be a tense one. It was also common knowledge that Sanusi harbored ambitions to succeed him. Following Sanusi’ departure from the Central Bank, he returned home and was given a traditional title, “Dan ‘Majen Kano,” reserved for “hardworking and courageous princes.”

Following the Emir’s death, the Kingmakers convened and asked each clan to advance a candidate, one of whom was Sanusi. The Emir’s youngest son (and Sullubawa nominee) Nasiru Ado Bayero was presumed by the press and the public as the front-runner — they were wrong.

Behind the scenes, Kwankwaso was conspiring with Sanusi to retaliate against the Bayero family for their warm relations with President Jonathan while strengthening his position for a presidential run. When Sanusi’s selection as the new Emir was announced in June 2014 just two days after Bayero’s death, crowds gathered to protest what they intuitively grasped was a rather… opaque decision-making process. Once it became clear Sanusi would get the nod, his rivals allegedly plotted to kidnap him — a scheme reportedly foiled at the last minute by Kwankwaso’s protection.

Their plan worked. Nasiru Ado Bayero left Kano shortly thereafter, refusing to acknowledge Sanusi’s legitimacy. But that didn’t matter, because he was stripped of his post and family title following Jonathan’s defeat by President Muhammadu Buhari in 2015. (Kwankwaso lost to Buhari, but later ran for Senate and won.)

That’s the end of our story. But this rather tidy resolution raises a number of questions for a military commander on the ground charged with hunting Boko Haram, foreign companies seeking to do business in a city they can barely navigate, or an investor wondering where power lies: how could we have known Sanusi was secretly the front-runner? Was Kwankwaso destined to outmaneuver the Bayeros and the Sullubawa clan? And was the root of their animus purely the result of religion and presidential politics, or were there other factors at play?

That’s where we come in. We build tools that quantify social capital — a currency measured in connections, reciprocity, and trust — and use them to create multi-layer network models that describe and visualize competing and cooperative actors in a social network like Kano’s. Using statistical tools like Network Kernel Density estimations, we can take these models, compare them to others, and map how they function. The last step — and this is where things truly get interesting — is to choose a goal (do you want to see Sanusi on the stool or power, or Bayero), and use our proprietary algorithms to determine how best to nudge the network toward your desired outcome. In Kano’s case, that means plotting the half-dozen steps necessary to get cozy with Kwankwaso and tip the scales in Sanusi’s favor.

image An example Multi-layer Network

None of this foolproof, of course — unlike chess pieces, people have a mind of their own. Which is why we’ve added the ability to forecast the consequences of our recommendations while taking into account networks that are constantly evolving. Speaking of which, we’re currently mapping the most influential actors in the Horn of Africa and the tribes of the Maghreb for the U.S. government. Using these additional network datasets, we’ll continue to refine our methodology and algorithms.

image Comparing 2 networks using Network Kernel Density. The “goal network” is on the left.

image After running our algorithm for 10 steps the network on the right more closely resembles the “goal network.”

Our ultimate goal is to develop an analytical engine that automates this process for decision makers for both military and commercial purposes. As you might imagine, the uses of a such a tool go far beyond military applications — knowing who to befriend is as much if not more valuable than knowing who to fight.

Posted by Greg Lindsay  |  Categories:  |  Comments


About Greg Lindsay

» Folllow me on Twitter.
» Friend me on Facebook.
» Email me.
» See upcoming events.

image
Greg Lindsay is a journalist, urbanist, futurist, and speaker. He is a senior fellow of the New Cities Foundation — where he leads the Connected Mobility Initiative  — and the director of strategy for LACoMotion, a new mobility festival coming to the Arts District of Los Angeles in November 2017.

He is also a non-resident senior fellow of The Atlantic Council’s Strategic Foresight Initiative, a visiting scholar at New York University’s Rudin Center for Transportation Policy & Management, a contributing writer for Fast Company and co-author of Aerotropolis: The Way We’ll Live Next.

» More about Greg Lindsay

Blog

July 28, 2017

Songdo, City of the Future? Or of Our Hopes and Fears?

July 20, 2017

NewCities Summit 2017: Songdo Redux

July 17, 2017

Seedstars, Ananda Urban Tech, and “Cities as a Service”

July 14, 2017

“Columbus Park” and Redesigning Manhattan for Autonomous Vehicles.

» More blog posts

Articles by Greg Lindsay

Medium  |  May 1, 2017

The Engine Room

Fast Company  |  January 19, 2017

The Collaboration Software That’s Rejuvenating The Young Global Leaders Of Davos

The Guardian  |  January 13, 2017

What If Uber Kills Public Transport Instead of Cars

Backchannel  |  January 4, 2017

The Office of the Future Is…an Office

New Cities Foundation  |  October 2016

Now Arriving: A Connected Mobility Roadmap for Public Transport

Inc.  |  October 2016

Why Every Business Should Start in a Co-Working Space

Popular Mechanics  |  May 11, 2016

Can the World’s Worst Traffic Problem Be Solved?

The New Republic  |  January/February 2016

Hacking The City

Fast Company  |  September 22, 2015

We Spent Two Weeks Wearing Employee Trackers: Here’s What We Learned

Fast Company  |  September 21, 2015

HR Meets Data: How Your Boss Will Monitor You To Create The Quantified Workplace

Inc.  |  March 2015

Which Contacts Should You Keep in Touch With? Let This Software Tell You

Inc.  |  March 2015

5 Global Cities of the Future

Global Solution Networks  |  December 2014

Cities on the Move

Medium  |  November 2014

Engineering Serendipity

New York University  |  October 2014

Sin City vs. SimCity

Harvard Business Review  |  October 2014

Workspaces That Move People

Inc.  |  April 2014

The Network Effect

Atlantic Cities  |  March 2014

How Las Vegas (Of All Places) May Be About to Reinvent Car Ownership

Wired (UK)  |  October 2013

How to Build a Serendipity Engine

Next American City  |  August 2013

IBM’s Department of Education

» See all articles